extended integer*'s type
Source: /avail/Avail/Foundation/Tuples
Categories: Tuples, Mathematics, Types
Compute and answer the best bounds of the specified summation.
The basic strategy is to first compute the integer range type r representing the shortest tuple, then keep adding in the range of successive elements to produce a series of integer range types in r, accumulating the type union of each such r into a range type representing the range of all possible sums. We actually use a faster technique over the homogenous part of the tuple.
| Position | Name | Type | Description | |
|---|---|---|---|---|
| Parameters | ||||
| 1 | intTupleType | extended integer*'s type | A tuple type whose default type is extended integer. | |
| Returns | extended integer's type | The strongest integer range that can be computed for the argument. | ||
extended integer*
Source: /avail/Avail/Foundation/Tuples
Categories: Tuples, Integers, Mathematics
Sum the elements of the specified tuple of integers.
| Position | Name | Type | Description | |
|---|---|---|---|---|
| Parameters | ||||
| 1 | intTuple | extended integer* | A tuple of integers. | |
| Returns | extended integer | An integer. | ||