extended integer*'s type

*Source*: /avail/Avail/Foundation/Tuples

*Categories:*Tuples, Mathematics, Types

Compute and answer the best bounds of the specified summation.

The basic strategy is to first compute the integer range type r representing the shortest tuple, then keep adding in the range of successive elements to produce a series of integer range types in r, accumulating the type union of each such r into a range type representing the range of all possible sums. We actually use a faster technique over the homogenous part of the tuple.

Position | Name | Type | Description | |
---|---|---|---|---|

Parameters | ||||

1 | intTupleType | extended integer*'s type | A tuple type whose default type is extended integer. | |

Returns | extended integer's type | The strongest integer range that can be computed for the argument. |

extended integer*

*Source*: /avail/Avail/Foundation/Tuples

*Categories:*Tuples, Integers, Mathematics

Sum the elements of the specified tuple of integers.

Position | Name | Type | Description | |
---|---|---|---|---|

Parameters | ||||

1 | intTuple | extended integer* | A tuple of integers. | |

Returns | extended integer | An integer. |